GC Column Comparison Table

	BP5MS	BP5	BPX5	HT5	HT8
Overview	Perfect for your 5% MS analysis. Non polar, 5% equivalence. Low bleed, great inertness	A general purpose phase with excellent high temperature characteristics. Popular column range used for a wide variety of applications	A highly inert phase, suitable for MS use. It has been designed for robustness and is suitable for over 80% of all routine analyses performed by chromatographers	Unique high temperature phase suited for simulated distillation and other petroleum applications	High temperature and low bleed column for polychlorinated biphenyl (PCB) compounds Separates PCB's on ortho-ring substitution as well as boiling point
Minimum Temperature (°C)	-40	-60	-40	10	-20
Maximum Continuous Temperature (°C)	330	320	360	380	360
Maximum Cycling Temperature (°C)	350	340	370	400	370
Phase Structure	$\begin{bmatrix} \mathbf{c}_{H_3}^{CH_3} & \mathbf{c}_{H_3}^{H_3} \end{bmatrix}_{x} \begin{bmatrix} \mathbf{c}_{H_3}^{H_3} \\ \mathbf{c}_{H_3}^{H_3} \end{bmatrix}_{y}$	$ \begin{bmatrix} \bigcirc \\ \vdots \\ \vdots \\ \bigcirc \end{bmatrix} = 0 = \begin{bmatrix} \mathbf{C} \mathbf{H}_3 \\ \mathbf{S}_1 - 0 \\ \mathbf{C} \mathbf{H}_3 \end{bmatrix}_{95\%} $	$ \begin{bmatrix} \mathbf{CH}_3 \\ \mathbf{CH}_3 \\ \mathbf{CH}_3 \end{bmatrix} \begin{bmatrix} \mathbf{CH}_3 \\ \mathbf{CH}_3 \\ \mathbf{CH}_3 \end{bmatrix}_{\mathbf{X}} \begin{bmatrix} \mathbf{CH}_3 \\ \mathbf{CH}_3 \\ \mathbf{CH}_3 \end{bmatrix}_{\mathbf{Y}} $	0_ 5I - CH ₃ - CH ₃ - CH ₃ - CH ₃	0-si-CH ₃ CH ₃ -CH ₃
Industry Suited	Trace Analysis General Purpose	General Purpose	General Purpose	Fuels, Environment, Food Fuels Environment Food	Environment Environment
Optimized for MS analysis	Yes	-	Yes	-	-
Polarity	Non-polar	Non-polar	Non-polar	Low polarity	Low polarity
Solvent Rinsable	-	-	-	Yes	-

SGE's High Five – Polysilphenylene and Polycarborane GC Column Range

GC Column Dimensions

	BP5MS	BP5	BPX5	HT5	HT8
Column ID (mm)	0.18, 0.25	0.22, 0.25, 0.32, 0.53	0.1, 0.15, 0.18, 0.22, 0.25, 0.32, 0.53	0.22, 0.25, 0.32, 0.53	0.1, 0.22, 0.25, 0.32, 0.53
Film Thickness (µm)	0.18, 0.25	0.25, 0.5, 1, 1.5, 5	0.1, 0.15, 0.18, 0.25, 0.4, 0.5, 1, 1.5, 3	0.1, 0.15, 0.5	0.1, 0.25, 0.5
Length (m)	20, 30	12, 15, 25, 30, 50, 60	6, 7, 10, 12, 15, 25, 30, 40, 50, 60	10, 12, 15, 25, 30	10, 12, 25, 30, 50, 60

SGE's High Five - GC Column Range

- The complete polysilphenylene and polycarborane GC column range
- New BP5MS optimized silphenylene column
- 5 Selectivities to suit your analyses

Analytical Columns Unit 7, Addington Business Centre Vulcan Way, New Addington Croydon. CR0 9UG

Tel: 01689 842736 Fax: 01689 800199 Email: analytical@btconnect.com www.analyticalcolumns.com

AUSTRALIA & PACIFIC REGION

Introducing the new BP5MS GC column completing the SGE High Five range of capillary columns.

New BP5MS - Optimized Silphenylene Content for General Purpose MS Analyses.

Evaluating Organo Chlorine Pesticides (OCP) on BP5MS.

Instrument: Carrier gas: Injector: Injector Temp: Split Mode: Split Flow: Column:	TR. He Spi 27 Spi clo 30 30 BP	ACE – GC/POLARIS-((1.5 mL/min) lit/Splitless mode 5 °C litless (1 min split val osed) mL/min m x 0.25 mm x 0.25 5MS (P/N 054310)	Q Ovi MS Ve MS 5 µm
RT: 16.14 - 35.08 1. Etridiazole 2. Chloroneb 3. Propachlor 4. Trifluralin 80 6. HCB 7. Dicloran 9. Quintozene 10. γ -HCH 11. Chlorotaloni 12. δ -HCH 9. Quintozene 10. γ -HCH 11. Chlorotaloni 12. δ -HCH 9. Quintozene 10. γ -HCH 11. Chlorotaloni 12. δ -HCH 9. Quintozene 10. γ -HCH 11. Chlorotaloni 12. δ -HCH	13. Heptachlor 14. Aldrin 15. DCPA 16. Isodrin 17. Heptaclor-epo: 18. Captan 19. γ-Chlordane 20. alfa-Chlordane 21. Endosulfan-I 22. t-Nonachlor 4 23. pp-DDE 24. Dieldrin	25. Endrin 26. Perthane 27. Chlorobenzilate 28. Endosulfan-II 29. cis-Nonachlor 30. pp-DDD 31. endrin Aldehydd 32. Carbofenothion 33. Endosulfan-sulf 34. pp-DDT 35. Endrin-Ketone 36. Methoxychlor IS 5 0 10 12 7 12	37. Mirex 38. c-Permethrin 39. f-Permetrhin ate 14, 15, 17 13, 16, 17

SGE High Five Column Selectivities

Each of the SGE High Five columns has subtly different selectivity giving you the ability to modify your method without significant changes to established conditions, elution order or run times, to achieve resolution of co-eluting peaks.

In the chromatograms to the right, the separation of a mixture of pesticides is shown using three of the colums within the range. The results highlight the selectivity differences of the BP5, BPX5 and HT8 enabling selection of a column that delivers the optimal resolution solution for your application.

GCMS used a 6890-5973N MSD (Agilent Technologies, CA, USA) with either a BP5, BPX5 or HT8 column (30 m x 0.25 mm i.d., 0.25 µm film thickness). Injections of 1 µL were splitless at a temperature of 260 °C and a pressure of 93 kPa. The oven was 40 °C (hold for 4 min) to 300 °C (hold for 10 min) at 10 °C/min. Transfer line was 260 °C and helium flow was 1.2 mL/min. Detection was by EI-MS between 40-500 Da at 2 scan/sec and the source was 230 °C.

anthracendione (M=208)	11	3,5-dimethylphenol
fluoranthene (M=202)	12	2,3-dimethylphenol
unknown (M=204)	13	isopropylphenol
pyrene (M=202)	14	safrole isomer 1
unknown (M=208)	15	safrole isomer 2
2,5-dimethylphenol	16	safrole isomer 3
2-nitrophenol	17	1,4-naphtalendione
2,6-dimethylphenol	18	1,4-dinitrobenzene
2,4-dimethylphenol	19	methapyrilene
4-ethylphenol	20	isodrin

9

10

en Temperature:

- Transfer Line Temperature:
- Type:
- Source Temperature:
- Acquisition Mode:
- 60 °C (5 min) 8 °C/min 300 °C (10 min) 300 °C ITD 225 °C Segmented Scan 45 – 450 amu

